Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
China Journal of Chinese Materia Medica ; (24): 4875-4880, 2021.
Article in Chinese | WPRIM | ID: wpr-921623

ABSTRACT

Due to the diverse sources and unique structures, the chemical components of Chinese medicinal materials are easy to self-assemble to form nanoparticles. The formation of self-assembled nanoparticles(SAN) can not only affect the absorption and distribution of the effective ingredients in Chinese medicinal materials but also may improve the biological activity of the effective ingredients or their simple mixtures, which is of great significance for revealing the compatibility mechanism of Chinese medicine prescription, developing new Chinese medicine products, and producing new nanomaterials. This paper reviews the formation, isolation, characterization, and application of SAN of Chinese medicines, and discusses the problems and development trends of the relevant research, which can provide reference for the further study and promote the innovation and application of such SAN.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Nanoparticles , Prescriptions
2.
China Journal of Chinese Materia Medica ; (24): 2190-2196, 2021.
Article in Chinese | WPRIM | ID: wpr-879177

ABSTRACT

To study the effect of self-assembled nanoparticles from Shaoyao Gancao Decoction(SGD-SAN) on the encapsulation, in vitro release and intestinal absorption of the main components of Baishao. Particle size analysis and morphological observation were used to verify the formation of SGD-SAN in the decoction. The entrapment efficiency(EE) of SGD-SAN on the main components of Baishao was determined by ultrafiltration centrifugation. The dialysis bag method was used to study the in vitro release of the main components of Baishao with pH 6.8 phosphate buffer solution as the release media. Single-pass intestinal perfusion study was performed to investigate the effect of SGD-SAN on the absorption of the main components of Baishao. The results showed that there were nanoparticles in the SGD, and the particle sizes and PDI of SGD-SAN were about 200 nm and 0.38, respectively. SGD-SAN was irregularly spherical under transmission electron microscope(TEM). The EEs of albiflorin, paeoniflorin and benzoylpaeoniflorin in SGD-SAN were 33.78%±1.03%,33.61%±0.90%,88.53%±0.58%, respectively. The release characteristics of albiflorin, paeoniflorin and benzoylpaeoniflorin from SGD-SAN showed a slow-release effect on pH 6.8 phosphate buffer solution media. SGD-SAN could significantly enhance the absorption of albiflorin, paeoniflorin and benzoylpaeoniflorin in the ileum. The results of this study indicated that SAN could be formed during the mixed decoction of Baishao and Gancao, and SGD-SAN could encapsulate the components of Baishao, with a certain slow-release effect, and the formation of SAN facilitated the absorption of drugs in the ileum.


Subject(s)
Drugs, Chinese Herbal , Intestinal Absorption , Intestines , Nanoparticles
3.
China Journal of Chinese Materia Medica ; (24): 1164-1169, 2019.
Article in Chinese | WPRIM | ID: wpr-774575

ABSTRACT

Herpetone( HPT) is a bioactive lignan extracted from Herpetospermum pedunculosum,which can protect liver,lower aminotransferase and inhibit hepatitis B virus. However,HPT has a poor oral bioavailability due to its poor water solubility. And there is no report about whether HPT has an anti-hepatic fibrosis activity. To improve the dissolution of HPT and study its anti-hepatic fibrosis activity and mechanism,the study group prepared herpetone nanosuspensions( HPT-NS) by the miniaturized media milling method. The formulation and process of HPT-NS were optimized by the single factor experiment. Scanning electron microscopy was used to observe morphology of HPT-NS. Dialysis method was used to study dissolution of HPT-NS in vitro. CCK8 method was used to assess the effect of HPT-NS on proliferation of the rat hepatic stellate cells( HSC-T6). Flow cytometry was used to assess the effect of HPT-NS on apoptosis and cell cycle of HSC-T6. The mean particle size of optimized HPT-NS was( 196±7) nm with a polydispersity index of 0.279±0.009.SEM showed that HPT-NS was in a regular rod shape. The cumulative dissolution rate of HPT-NS reached 93% in 18 h,and was higher than that of herpetone coarse suspensions( HPT-CS,28%). CCK8 experiment showed that the inhibition rate of HPT-NS on HSC-T6 was higher than that of HPT-CS. Flow cytometry showed that HPT-NS could block HSC-T6 cells in G2/M phase and induce apoptosis of HSC-T6 cells,with a significantly stronger effect than HPT-CS. The results revealed that HPT-NS significantly increased the in vitro dissolution of HPT,and enhanced the inhibitive effect on HSC-T6 cell proliferation by blocking cells in the G2/M phase and inducing late apoptosis.


Subject(s)
Animals , Rats , Cell Line , Hepatic Stellate Cells , Lignans , Liver Cirrhosis
4.
China Journal of Chinese Materia Medica ; (24): 1357-1362, 2019.
Article in Chinese | WPRIM | ID: wpr-774548

ABSTRACT

In this study, solid dispersion technology was used to develop volatile oil from Acorus tatarinowii self-nanoemulsion dropping pills(VOA-SNEDDS-DP) and its protective effect on acute myocardial ischemia injury was evaluated. Taking exterior quality, weight variation and the resolving time as comprehendsive evaluation indexes, the preparation process and formulation of the dropping pills were optimized by orthogonal design, and the dissolution rate in vitro of the optimized VOA-SNEDDS-DP was investigated. The rat model of acute myocardial ischemia was induced by intraperitoneal injection of isoproterenol hydrochloride and the serum levels of superoxide dismutase(SOD), malondialdehyde(MDA), creatine kinase(CK) and pathological changes of myocardial tissue were determined to evaluate therapeutic effect of the dropping pills on acute myocardial ischemia. The results showed that the optimal formulation and preparation process of VOA-SNEDDS-DP were as follows: PEG6000-PEG8000 was 1∶1, proportion of VOA-SNEDDS and matrix was l∶2.5, the temperature of drug fluids was 75 ℃, drop rate was 35 drops/min, drop distance was 5 cm, the condensing agent temperature was 2-10 ℃. The content of β-asarone in the dropping pills was 42.46 mg·g~(-1). The accumulated dissolution rate of the dropping pills reached 93.85% in 10 min. The results of pharmacodynamic experiments showed that VOA-SNEDDS-DP could significantly increase the SOD content(P<0.05), reduce the levels of MDA and CK(P<0.05) in serum, and effectively improve the pathological morphology of myocardial tissue. These results revealed that the preparation of VOA-SNEDDS-DP by solid dispersion technology was stable and feasible, and VOA-SNEDDS-DP had protective effect on acute myocardial ischemia injury.


Subject(s)
Animals , Rats , Acorus , Chemistry , Creatine Kinase , Blood , Drugs, Chinese Herbal , Pharmacology , Malondialdehyde , Blood , Myocardial Ischemia , Drug Therapy , Oils, Volatile , Pharmacology , Plant Oils , Pharmacology , Superoxide Dismutase , Blood
5.
China Journal of Chinese Materia Medica ; (24): 3828-3833, 2018.
Article in Chinese | WPRIM | ID: wpr-775410

ABSTRACT

Nanosuspension (also called nanocrystal suspension or nanocrystal) could significantly enhance the saturated solubility and dissolution of insoluble drugs, and improve their bioavailability by reducing particle size and increasing the specific surface, which could then solve the delivery problems of the poorly soluble active ingredients and effective parts of Chinese materia medica (CMM). Based on the brief summaries of nanosuspension preparation methods, this paper would mainly review the and behaviors of poorly soluble CMM nanosuspension, discuss and analyze its problems, so as to provide reference and thinking for the further study of nanosuspension drug delivery system of poorly soluble CMM and promote the development and perfection of nanosuspension technology in CMM.


Subject(s)
Biological Availability , Drug Delivery Systems , Materia Medica , Chemistry , Medicine, Chinese Traditional , Nanoparticles , Particle Size , Solubility , Suspensions
6.
China Journal of Chinese Materia Medica ; (24): 4062-4068, 2018.
Article in Chinese | WPRIM | ID: wpr-775378

ABSTRACT

In order to increase the solubility of volatile oil from Acori Tatarinowii Rhizoma, this study was to prepare self-nanoemulsion of volatile oil from Acori Tatarinowii Rhizoma . The prescriptions were preliminarily screened by miscibility studies, excipient compatibility tests, and pseudo-ternary phase diagrams, and then the optimal formulation was obtained by using the Box-Behnken response surface method, with particle size and drug-loading rate as the indicators. The self-nanoemulsion prepared by optimal prescription was characterized and evaluated for dissolution. The results showed that the optimal prescription for this volatile oil self-nanoemulsion was as follows: 41.7% volatile oil, 46.8% Tween-80, and 11.5% PEG-400. The prepared self-nanoemulsion was clear and transparent, with drug-loading of (192.77±1.64) mg·g⁻¹, particle diameter of (53.20±0.94) nm, polydispersity index of 0.230± 0.013, and Zeta potential of (-12.2±0.7) mV. The dissolution of self-nanoemulsion was higher than that of volatile oil. In this research, volatile oil served as the oil phase in self-nanoemulsion, so the prescription was simpler and the drug loading rate was higher. The prepared self-nanoemulsion complied with the relevant quality requirements, providing a reference for the preparation of volatile oil formulations.


Subject(s)
Acorus , Chemistry , Emulsions , Oils, Volatile , Reference Standards , Particle Size , Plant Oils , Reference Standards , Rhizome , Chemistry , Solubility
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 70-80, 2018.
Article in English | WPRIM | ID: wpr-773637

ABSTRACT

The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC, C and decrease in T when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability.


Subject(s)
Animals , Humans , Male , Rats , Benzofurans , Chemistry , Biological Availability , Cucurbitaceae , Chemistry , Drug Carriers , Chemistry , Drug Compounding , Drug Stability , Freeze Drying , Furans , Chemistry , Lignans , Chemistry , Pharmacokinetics , Nanoparticles , Chemistry , Particle Size , Plant Extracts , Chemistry , Rats, Sprague-Dawley , Solubility
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 70-80, 2018.
Article in English | WPRIM | ID: wpr-812427

ABSTRACT

The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC, C and decrease in T when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability.


Subject(s)
Animals , Humans , Male , Rats , Benzofurans , Chemistry , Biological Availability , Cucurbitaceae , Chemistry , Drug Carriers , Chemistry , Drug Compounding , Drug Stability , Freeze Drying , Furans , Chemistry , Lignans , Chemistry , Pharmacokinetics , Nanoparticles , Chemistry , Particle Size , Plant Extracts , Chemistry , Rats, Sprague-Dawley , Solubility
9.
China Journal of Chinese Materia Medica ; (24): 1626-1632, 2018.
Article in Chinese | WPRIM | ID: wpr-687255

ABSTRACT

Astilbil nanosuspension (AT-NS) was prepared by an antisolvent precipitation method. The formula and process of AT-NS were optimized by the single factor experiment. AT-NS was prepared under the optimal conditions, and its morphology and crystallinity were characterized. In vitro release of AT-NS was also determined. The particle size of AT-NS stabilized by PVP K30 was (149±3) nm, and the polydispersity index (PDI) and stability index (SI) were 0.137±0.014 and 0.940±0.012, respectively. The results of SEM showed that AT-NS was spherical. Both XRD and DSC showed that AT was amorphous in nanosuspension. In the release test, AT-NS showed a significantly increased dissolution. This simple low-cost approach could prepare AT-NS successfully. AT-NS could significantly improve the dissolution of AT and provide the reference to break the limitation on the clinical application of AT.

10.
China Journal of Chinese Materia Medica ; (24): 2984-2988, 2017.
Article in Chinese | WPRIM | ID: wpr-335906

ABSTRACT

The nanosuspension of quercetin (QT-NS) was prepared by a miniaturized milling method, and the process was optimized by Box-Behnken response surface method. Then the accumulative release rate of QT-NS in vitro was determined. The results showed that the optimal process parameters were as follows: ZrO2 4.5 mL, milling speed 690 r•min⁻¹ and milling time 1.5 h; the particle size of QT-NS was (169±5) nm, polydispersity index of 0.204±0.006 and stability index of 0.827±0.014, respectively. There was a little deviation between the theoretically predicted value and the measured value, indicating that this model had a good prediction effect. The accumulative release rate in vitro of QT-NS in 120 min was significantly higher than that of the raw drug and physical mixture. This simple low-cost miniaturization approach could prepare QT-NS successfully, and could provide reference for the formulation of the nanosuspension.

11.
China Journal of Chinese Materia Medica ; (24): 2473-2478, 2017.
Article in Chinese | WPRIM | ID: wpr-258492

ABSTRACT

To increase the permeation and retention of isopsoralen in skin, and improve its bioavailability.Isopsoralen loaded nanostructure liquid carrier (IPRN-NLC) was prepared by high pressure homogenization andoptimized by orthogonal experiment with the encapsulation efficiency, drug loading and average particle size as the evaluation indexes. The in vitro transdermal permeation of IPRN-NLC was evaluated by Franze diffusion cells.The results showed that solid-liquid lipid ratio of optimum IPRN-NLC formulation was 7∶3,drug-lipid ratio of 1∶30, 1% surfactant. Under these conditions, IPRN-NLC had an average encapsulation of (90.25±0.73)%,drug loading of (1.56±0.27)% and an average particle size of (305±1.57) nm.The in vitro transdermal permeation results showed that IPRN-NLC could increase the amount of IPRN permeated though skin, with 3 times of the epidermal retention as compared with IPRN solution. From the results we can know that the IPRN-NLC prepared by high pressure homogenization can improve the permeation andaccumulation of IPRN in the skin, with wide application prospects in the field of transdermal administration.

12.
China Journal of Chinese Materia Medica ; (24): 3232-3238, 2016.
Article in Chinese | WPRIM | ID: wpr-307172

ABSTRACT

To prepare tanshinone ⅡA loaded nanostructured lipid carrier (Tan ⅡA-NLC), and study its in vitro transdermal permeation characteristics. The Tan ⅡA-NLC was prepared by high pressure homogenization technology and optimized by Box-Behnken design-response surface method, and it was characterized in terms of morphology, particle size, zeta potention, et al. The transdermal permeation of Tan ⅡA-NLC was evaluated by using Franz diffusion cells. The results showed that, the optimal formulation was as follows: drug/lipid materials ratio 88, GMS/MCT ratio 2, emulsifier concentration 1%, average particle size (182±14) nm, polydispersity index PDI (0.190 6±0.024 5), zeta potential (-27.8± 5.4) mV, encapsulation efficiency EE (86.44%±9.26%) and drug loading DL (0.98%±0.18%), respectively. The in vitro transdermal permeation results showed that as compared with Tan ⅡA solution, Tan ⅡA-NLC had lower transdermal permeation amount after applying drug for 24 h, but its retention in the epidermis was 3.18 times that of solution. These results indicated that the prepared Tan ⅡA-NLC could effectively increase the regention of Tan ⅡA in the epidermis, and had a broad application prospect.

13.
China Journal of Chinese Materia Medica ; (24): 3674-3678, 2016.
Article in Chinese | WPRIM | ID: wpr-307102

ABSTRACT

To study the absorption kinetics of paeoniflorin lipid liquid crystalline nanoparticles (Pae-LLCN) in different intestinal segments of rats and compare them with paeoniflorin(Pae) solution. Rat everted gut sac models were adopted for intestinal absorption test, and Pae content was determined by HPLC method to study the absorption characteristics of Pae-LLCN in rat duodenum, jejunum, ileum and colon, and investigate the effects of different drug concentrations on intestinal absorption. Results showed that Pae-LLCN and Pae were well absorbed at different intestine segments and different concentrations. The absorption constant Ka was increased with the increasing of the drug concentration, indicating possible passive absorption. The accumulative absorption volume Q and absorption constant Ka of Pae-LLCN were higher than those of Pae at each intestinal segment(P<0.05). The results revealed that Pae-LLCN and Pae could be well absorbed in whole intestinal segments and its mechanism may be passive absorption. LLCN can effectively improve the intestinal absorption of Pae.

14.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 454-460, 2015.
Article in English | WPRIM | ID: wpr-812522

ABSTRACT

The objective of this study was to prepare nanostructured lipid carrier (NLC)-based topical gel of Ganoderma Triterpenoids (GTs) and evaluate their effects on frostbite treatment. GT-NLCs was prepared by the high pressure homogenization method and then characterized by morphology and analyses of particle size, zeta potential, entrapment efficiency (EE), and drug loading (DL). The NLCs was suitably gelled for skin permeation studies in vitro and pharmacodynamic evaluation in vivo, compared with the GT emulgel. The GT-NLC remained within the colloidal range and was uniformly dispersed after suitably gelled by carbopol preparation. Transmission electron microscopy (TEM) study showed GT-NLCs was spherical in shape. The EE (%) and DL (%) could reach up to (81.84 ± 0.60)% and (2.13 ± 0.12)%, respectively. The result of X-ray diffractograms (XRD) showed that GTs were in an amorphous state in the NLC-gel. In vitro permeation studies through rat skin indicated that the amount of GTs permeated through skin of GT-NLCs after 24 h was higher than that of GT emulsion, and GT-NLCs increased the accumulative amounts of GTs in epidermis 7.76 times greater than GT emulsion. GT-NLC-gel was found to possess superior therapeutic effect for frostbite, compared with the GT emulgel. The NLC based topical gel of GTs could improve -their therapeutic effect for frostbite.


Subject(s)
Animals , Humans , Male , Rats , Drug Carriers , Chemistry , Drugs, Chinese Herbal , Chemistry , Frostbite , Drug Therapy , Ganoderma , Chemistry , Gels , Chemistry , Lipids , Chemistry , Nanostructures , Chemistry , Rats, Sprague-Dawley
15.
China Journal of Chinese Materia Medica ; (24): 4395-4399, 2015.
Article in Chinese | WPRIM | ID: wpr-279227

ABSTRACT

To explore the feasibility of chemical and biological method in evaluation of the in vitro dissolution rate of Liuwei Wuling tablet (LWT), this experiment investigated the inhibitory effect of LWT dissolving solutions on LX-2 hepatic stellate cells in 0.1% SDS dissolution medium in different dissolving periods. From these results, the cumulative dissolution rate of LWT was obtained based on the cell inhibitory rate. The dissolution rates of deoxyschizandrin, phillyrin, and Specnuezhenide were determined by HPLC method. A novel approach of self-defined weighting coefficient had been created to establish the integrated dissolution rate model. Then f2 similar factor method was used to evaluate the relevance of these two methods. The results showed that f2 values for deoxyschizandrin, phillyrin, Specnuezhenide, and the integrated dissolution were 61, 43, 61 and 75 respectively, indicating that the dissolution of multi-component integration could fully reflect the biological potency of the whole recipe. The dissolution evaluation method for multicomponent integration based on biological activity is expected to be one of the effective means for in vitro dissolution test of LWT.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Chemistry , Kinetics , Quality Control , Solubility , Tablets , Chemistry
16.
China Journal of Chinese Materia Medica ; (24): 236-239, 2015.
Article in Chinese | WPRIM | ID: wpr-305316

ABSTRACT

To study the influence of stir-baked with sand on active ingredients, diarrhea and hepatoprotection of Herpetospermum caudigerum, the contents of herperione and herpetin in H. caudigerum before and after stir-baking with sand were analyzed by HPLC. The effect of stir-baked with sand on diarrhea of H. caudigerum TL was evaluated using the mean stool rate (MSR) and mean diarrheal index ( MDI) and the influence of stir-baked with sand on hepatoprotective effect of H. caudigerum TL was examined using a mouse model of CCl4-induced liver injury based on the analysis of serum ALT and AST activities. The results of HPLC analysis showed the content of herperione in H. caudigerum after stir-baking with sand decreased by 40.9% (P < 0.01) and the content of herpetin had no change. Pharmacodynamic results showed that the MSR and MDI of high-dose and middle-dose group of H. caudigerum TL after stir-baking with sand were significantly lower than that of high-dose and middle-dose group of H. caudigerum TL without stir-baking with sand; The high-dose and middle-dose of H. caudigerum TL with/without stir-baking with sand significantly alleviated liver injury as indicated by the decreased levels of serum ALT and AST, but the ALT and AST levels of high-dose and middle-dose group of H. caudigerum TL after stir-baking with sand were higher than that of H. caudigerum TL without stir-baking with sand. The results revealed that the stir-baking with sand could effectively relieve diarrhea effect of H. caudigerum TL, while it also reduces the hepatoprotection of H. caudigerum TL.


Subject(s)
Animals , Female , Male , Mice , Chromatography, High Pressure Liquid , Cooking , Cucurbitaceae , Chemistry , Diarrhea , Liver , Protective Agents , Pharmacology
17.
Chinese Traditional and Herbal Drugs ; (24): 2770-2775, 2014.
Article in Chinese | WPRIM | ID: wpr-854776

ABSTRACT

Objective: To prepare the nanosuspension-based gel of Ganoderma lucidum triterpenoids (GT-NS-gel) and investigate the in vitro transdermal diffusion characteristics. Methods: GT-NS was prepared by high pressure homogenization and then transformed into gel. The formulation of GT-NS-gel was optimized by response surface method with cumulative release of drug from the GT-NS-gel within 24 h, and the amount of drug in the skin after applying GT-NS-gel for 24 h was used as indexes. In vitro percutaneous permeation and skin deposition of GT-NS-gel were studied and compared with those of GT-gel. Results: The GT-NS-gel prepared by optimal formulation (5 mg/g Carbomer 940, 30 mg/g GT, and 47.2 mg/g lecithin) could release in vitro at 24 h to (56.28±2.16)%, and the amount of drug in the skin after applying GT-NS-gel for 24 h was (472.89±8.74) μg/cm2. There was a little deviation between the theoretically predicted value and the measured value. It showed that this model had a good prediction. The amounts of GT penetrating through the skin and in the skin after applying GT-NS-gel for 24 h were (50.73±4.97) and (475.89±10.74) μg/cm2, which were significantly higher than GT-gel (P<0.05). Conclusion: The GT-NS-gel has the ability to increase drug concentration in the skin, which can improve the bioavailability of the local skin.

SELECTION OF CITATIONS
SEARCH DETAIL